A TGFβ-Smad4-Fgf6 signaling cascade controls myogenic differentiation and myoblast fusion during tongue development.

نویسندگان

  • Dong Han
  • Hu Zhao
  • Carolina Parada
  • Joseph G Hacia
  • Pablo Bringas
  • Yang Chai
چکیده

The tongue is a muscular organ and plays a crucial role in speech, deglutition and taste. Despite the important physiological functions of the tongue, little is known about the regulatory mechanisms of tongue muscle development. TGFβ family members play important roles in regulating myogenesis, but the functional significance of Smad-dependent TGFβ signaling in regulating tongue skeletal muscle development remains unclear. In this study, we have investigated Smad4-mediated TGFβ signaling in the development of occipital somite-derived myogenic progenitors during tongue morphogenesis through tissue-specific inactivation of Smad4 (using Myf5-Cre;Smad4(flox/flox) mice). During the initiation of tongue development, cranial neural crest (CNC) cells occupy the tongue buds before myogenic progenitors migrate into the tongue primordium, suggesting that CNC cells play an instructive role in guiding tongue muscle development. Moreover, ablation of Smad4 results in defects in myogenic terminal differentiation and myoblast fusion. Despite compromised muscle differentiation, tendon formation appears unaffected in the tongue of Myf5-Cre;Smad4(flox/flox) mice, suggesting that the differentiation and maintenance of CNC-derived tendon cells are independent of Smad4-mediated signaling in myogenic cells in the tongue. Furthermore, loss of Smad4 results in a significant reduction in expression of several members of the FGF family, including Fgf6 and Fgfr4. Exogenous Fgf6 partially rescues the tongue myoblast fusion defect of Myf5-Cre;Smad4(flox/flox) mice. Taken together, our study demonstrates that a TGFβ-Smad4-Fgf6 signaling cascade plays a crucial role in myogenic cell fate determination and lineage progression during tongue myogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CNC-derived fibroblasts and controls myogenic cell proliferation through tissue-tissue interactions during tongue morphogenesis

INTRODUCTION Tongue formation is a relatively recent evolutionary adaptation of craniofacial musculoskeleton, appearing to be coincident with terrestrial amphibian species (Iwasaki, 2002; Noden and FrancisWest, 2006). The mammalian tongue is composed of numerous tissues, including mesoderm-derived skeletal muscle, cranial neural crest (CNC)-derived supportive connective tissue and a stratified,...

متن کامل

Smad4-Irf6 genetic interaction and TGFβ-mediated IRF6 signaling cascade are crucial for palatal fusion in mice.

Cleft palate is one of the most common human birth defects and is associated with multiple genetic and environmental risk factors. Although mutations in the genes encoding transforming growth factor beta (TGFβ) signaling molecules and interferon regulatory factor 6 (Irf6) have been identified as genetic risk factors for cleft palate, little is known about the relationship between TGFβ signaling...

متن کامل

Smad4 restricts differentiation to promote expansion of satellite cell derived progenitors during skeletal muscle regeneration

Skeletal muscle regenerative potential declines with age, in part due to deficiencies in resident stem cells (satellite cells, SCs) and derived myogenic progenitors (MPs); however, the factors responsible for this decline remain obscure. TGFβ superfamily signaling is an inhibitor of myogenic differentiation, with elevated activity in aged skeletal muscle. Surprisingly, we find reduced expressio...

متن کامل

Notch Pathway Activation Contributes to Inhibition of C2C12 Myoblast Differentiation by Ethanol

The loss of muscle mass in alcoholic myopathy may reflect alcohol inhibition of myogenic cell differentiation into myotubes. Here, using a high content imaging system we show that ethanol inhibits C2C12 myoblast differentiation by reducing myogenic fusion, creating smaller and less complex myotubes compared with controls. Ethanol administration during C2C12 differentiation reduced MyoD and myog...

متن کامل

SMAD4-mediated WNT signaling controls the fate of cranial neural crest cells during tooth morphogenesis.

TGFβ/BMP signaling regulates the fate of multipotential cranial neural crest (CNC) cells during tooth and jawbone formation as these cells differentiate into odontoblasts and osteoblasts, respectively. The functional significance of SMAD4, the common mediator of TGFβ/BMP signaling, in regulating the fate of CNC cells remains unclear. In this study, we investigated the mechanism of SMAD4 in regu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 139 9  شماره 

صفحات  -

تاریخ انتشار 2012